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1 Similarity Graphs

Definition 1. (Similarity graphs) Given a set of data points fxigi=1n , and some notion of
similarity sij, which measures the similarity between xi and xj. Then we can representing the data
in form of the similarity graph G=(V ;E), where each vertex vi is in this graph represents a data
point xi. xi and xj are connected if sij>�, where � is a threshhold, usually set to 0.

Then the problem of clustering can be reformulated using the similarity graph: we want to find a
partition of similarity graph.

2 Graph Notation

� Let G=(V ;E) be an undirected weighted graph with vertex set V =fv1;:::; vng. Each edge
between two vertices vi and vj carries a non-negative weight wij> 0.

� The weighted adjacency matrix is the matrix W =(wij)i;j=1; : : : n. wij=0 means vi and
vj are not connected. We require wij=wji since the graph is undirected.

� The degree of a vertex is defined as

di=
X
j=1

n

wij:

The degree matrix is defined as D= diag(d1; : : : dn).

� Given a subset of vertices A� V , we denote its complement V nA by A�. We define the
indicator vector 1A=(f1; : : : fn)T 2Rn where fi= 1fvi2Ag. For convenience we use i2A
to represent vi2A.

� For A;B 2V we define

W (A;B)=
X

i2A;j2B
wij

� Two different ways to measure size of A:

jAj := the number of vertices in A

vol(A) :=
X
i2A

di

� A2 V is connected if any two vertices of A can be joined by a path such that all inter-
mediate points also lie in A. A is called a connected component if it is connected and if
there are no connections between vertices in A and A�.

� The nonempty sets A1;:::Ak form a partitioin of the graph if Ai^Aj=? andAi[ :::[Ak=V .

� Eigenvalues will always be ordered increasingly, respecting multiplicities.
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� �The first k eigenvectors� refers to the eigenvectors corresponding to the k smallest eigen-
values.

3 Graph Laplacians

3.1 The unnormalized graph Laplacian

Definition 2. The Unnormalized Graph Laplacian is defined as

L=D¡W:

Proposition 3. (Properties of L) The matrix L have the following properties:

1. For every vector f 2Rn we have

fTLf = 1
2

X
i;j=1

n

wij(fi¡ fj)2:

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is 1=(1; : : : 1)T 2Rn.

4. L has n non-negative, real eigenvalue 0=�16�26 � � �6�n:

Remark 4. Unnormalized graph Laplacian does not depdend on diagonal elements of the adja-
cency matrix W .

Proposition 5. Let G be an undirected graph with non-negative weights. Then the multiplicity k
of the eigenvalue 0 of L equals the number of connected components A1; : : : ; Ak in the graph. The
eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1; : : : ; 1Ak.

3.2 The normalized graph Laplacians

Definition 6. There are two matrices which are called normalized graph Laplacians:

Lsym :=D¡1/2LD¡1/2= I ¡D¡1/2WD¡1/2

Lrw :=D¡1L= I ¡D¡1W

Remark 7. Lsym is symmetric and Lrw is closely related to random walk.

Proposition 8. (Properties of Lsym and Lrw)

1. For every f 2Rn we have

fTLsymf =
1
2

X
i;j=1

n

wij

 
fi

di
p ¡ fi

dj
p !

2

2. � is an eigenvalue of Lrw with eigenvector u if and only if � is an eigenvalue of Lsym with
eigenvector w=D¡1/2u.
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3. � is an eigenvalue of Lrw with eigenvector u if and only if � and u solve the generalized
eigen-problem Lu=�Du.

4. 0 is an eigenvalue of Lrw with 1 as eigenvector. 0 is an eigenvalue of Lsym with eigenvector
D1/21.

5. Lsym and Lrw are positive semi-definite.

Proposition 9. Let G be an undirected graph with non-negative weights. Then the multiplicity k
of the eigenvalue 0 of both Lrw and Lsym equals the number of connected components A1; : : : ; Ak
in the graph. For Lrw the eigenspace of eigenvalue 0 is spanned by 1Ai of those components. For
Lsym, the eigenspace of 0 is spanned by the vectors D¡1/21Ai.

4 Spectral Clustering Algorithms

Algorithm 1

(Unnormalized spectral clustering)
Input: Similarity matrix S 2Rn�n, number k of the clusters to construct.

1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.

2. Compute the unnormalized Laplacian L.

3. Compute the first k eigenvectors u1; : : : ; uk of L.

4. Let U 2Rn�k be the matrix containing u1; : : : uk as columns.

5. For i=1; : : : ; n, let yi2Rk be the vector corresponding to the i-th row of U .

6. Cluster the points (yi)i=1; : : : n in Rk with the k-means algorithm into clusters C1; : : : ; Ck.

Output: Clusters A1; : : :Ak with Ai= fj jyj 2Cig.

Algorithm 2

(Normalized spectral clustering with Lrw)
Input: Similarity matrix S 2Rn�n, number k of the clusters to construct.

1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.

2. Compute the unnormalized Laplacian L.

3. Compute the first k eigenvectors u1; : : : ; uk of the generalized eigenproblem
Lu=�Du, i.e. eigenvectors of Lrw.

4. Let U 2Rn�k be the matrix containing u1; : : : uk as columns.

5. For i=1; : : : ; n, let yi2Rk be the vector corresponding to the i-th row of U .

6. Cluster the points (yi)i=1; : : : n in Rk with the k-means algorithm into clusters C1; : : : ; Ck.

Output: Clusters A1; : : :Ak with Ai= fj jyj 2Cig.

Algorithm 3

(Normalized spectral clustering with Lsym)
Input: Similarity matrix S 2Rn�n, number k of the clusters to construct.

1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.

2. Compute the unnormalized Laplacian L.

3. Compute the first k eigenvectors u1; : : : ; uk of Lsym.

4. Let U 2Rn�k be the matrix containing u1; : : : uk as columns.

5. Form the matrix T by normalizing the rows of U to 1.
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6. For i=1; : : : ; n, let yi2Rk be the vector corresponding to the i-th row of U .

7. Cluster the points (yi)i=1; : : : n in Rk with the k-means algorithm into clusters C1; : : : ; Ck.

Output: Clusters A1; : : :Ak with Ai= fj jyj 2Cig.
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