A Note on Spectral Clustering

BY LANGTIAN MA

1 Similarity Graphs

Definition 1. (Similarity graphs) Given a set of data points $\{x_i\}_{i=1}^n$, and some notion of similarity s_{ij} , which measures the similarity between x_i and x_j . Then we can representing the data in form of the similarity graph G = (V, E), where each vertex v_i is in this graph represents a data point x_i . x_i and x_j are connected if $s_{ij} > \tau$, where τ is a threshold, usually set to 0.

Then the problem of clustering can be reformulated using the similarity graph: we want to find a partition of similarity graph.

2 Graph Notation

- Let G = (V, E) be an undirected weighted graph with vertex set $V = \{v_1, \dots, v_n\}$. Each edge between two vertices v_i and v_j carries a non-negative weight $w_{ij} > 0$.
- The weighted **adjacency matrix** is the matrix $W = (w_{ij})_{i,j=1,\ldots n}$. $w_{ij} = 0$ means v_i and v_j are not connected. We require $w_{ij} = w_{ji}$ since the graph is undirected.
- The degree of a vertex is defined as

$$d_i = \sum_{j=1}^n w_{ij}.$$

The degree matrix is defined as $D = \operatorname{diag}(d_1, \dots d_n)$.

- Given a subset of vertices $A \subset V$, we denote its complement $V \setminus A$ by \bar{A} . We define the indicator vector $\mathbb{1}_A = (f_1, \dots f_n)^T \in \mathbb{R}^n$ where $f_i = \mathbb{1}\{v_i \in A\}$. For convenience we use $i \in A$ to represent $v_i \in A$.
- For $A, B \in V$ we define

$$W(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

• Two different ways to measure size of A:

|A| :=the number of vertices in A

$$\operatorname{vol}(A) := \sum_{i \in A} d_i$$

- $A \in V$ is **connected** if any two vertices of A can be joined by a path such that all intermediate points also lie in A. A is called a **connected component** if it is connected and if there are no connections between vertices in A and \bar{A} .
- The nonempty sets $A_1, ..., A_k$ form a partition of the graph if $A_i \wedge A_j = \emptyset$ and $A_i \cup ... \cup A_k = V$.
- Eigenvalues will always be ordered increasingly, respecting multiplicities.

"The first k eigenvectors" refers to the eigenvectors corresponding to the k smallest eigenvalues.

3 Graph Laplacians

3.1 The unnormalized graph Laplacian

Definition 2. The Unnormalized Graph Laplacian is defined as

$$L = D - W$$
.

Proposition 3. (Properties of L) The matrix L have the following properties:

1. For every vector $f \in \mathbb{R}^n$ we have

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- 2. L is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is $\mathbf{1} = (1, \dots 1)^T \in \mathbb{R}^n$.
- 4. L has n non-negative, real eigenvalue $0 = \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$.

Remark 4. Unnormalized graph Laplacian does not depend on diagonal elements of the adjacency matrix W.

Proposition 5. Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$.

3.2 The normalized graph Laplacians

Definition 6. There are two matrices which are called normalized graph Laplacians:

$$L_{\text{sym}} := D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2}$$

$$L_{\text{rw}} := D^{-1}L = I - D^{-1}W$$

Remark 7. L_{sym} is symmetric and L_{rw} is closely related to random walk.

Proposition 8. (Properties of L_{sym} and L_{rw})

1. For every $f \in \mathbb{R}^n$ we have

$$f^T L_{\text{sym}} f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_i}{\sqrt{d_j}} \right)^2$$

2. λ is an eigenvalue of $L_{\rm rw}$ with eigenvector u if and only if λ is an eigenvalue of $L_{\rm sym}$ with eigenvector $w = D^{-1/2}u$.

- 3. λ is an eigenvalue of $L_{\rm rw}$ with eigenvector u if and only if λ and u solve the generalized eigen-problem $Lu = \lambda Du$.
- 4. 0 is an eigenvalue of $L_{\rm rw}$ with 1 as eigenvector. 0 is an eigenvalue of $L_{\rm sym}$ with eigenvector $D^{1/2}\mathbf{1}$.
- 5. L_{sym} and L_{rw} are positive semi-definite.

Proposition 9. Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of both L_{rw} and L_{sym} equals the number of connected components A_1, \ldots, A_k in the graph. For L_{rw} the eigenspace of eigenvalue 0 is spanned by $\mathbb{1}_{A_i}$ of those components. For L_{sym} , the eigenspace of 0 is spanned by the vectors $D^{-1/2}\mathbb{1}_{A_i}$.

4 Spectral Clustering Algorithms

Algorithm 1

(Unnormalized spectral clustering)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of the clusters to construct.

- 1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.
- 2. Compute the unnormalized Laplacian L.
- 3. Compute the first k eigenvectors u_1, \ldots, u_k of L.
- 4. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing $u_1, \dots u_k$ as columns.
- 5. For i = 1, ..., n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U.
- 6. Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters $A_1, \ldots A_k$ with $A_i = \{j | y_i \in C_i\}$.

Algorithm 2

(Normalized spectral clustering with $L_{\rm rw}$)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of the clusters to construct.

- 1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.
- 2. Compute the unnormalized Laplacian L.
- 3. Compute the first k eigenvectors u_1, \ldots, u_k of the generalized eigenproblem $Lu = \lambda Du$, i.e. eigenvectors of L_{rw} .
- 4. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing $u_1, \dots u_k$ as columns.
- 5. For $i=1,\ldots,n$, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U.
- 6. Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters $A_1, \ldots A_k$ with $A_i = \{j | y_j \in C_i\}$.

Algorithm 3

(Normalized spectral clustering with L_{sym})

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of the clusters to construct.

- 1. Construct a similarity graph based on S, let W be its weighted adjacency matrix.
- 2. Compute the unnormalized Laplacian L.
- 3. Compute the first k eigenvectors u_1, \ldots, u_k of L_{sym} .
- 4. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing $u_1, \dots u_k$ as columns.
- 5. Form the matrix T by normalizing the rows of U to 1.

- 6. For $i=1,\ldots,n,$ let $y_i\in\mathbb{R}^k$ be the vector corresponding to the *i*-th row of U.
- 7. Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k . Output: Clusters $A_1,\ldots A_k$ with $A_i=\{j\,|\,y_j\in C_i\}$.