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1 Randomized Block Design
Problem Setting:

� One block factor with b levels. and one treatment factor with t levels.

� Treatments randomized with blocks.

� No replicate observations. Our observed data yij represents the data in ith block with jth
factor.

Treatment
A B C D Mean

Block 1 89 88 97 94 92
Block 2 84 77 92 79 83
Block 3 81 87 87 85 85
Block 4 87 92 89 84 88
Block 5 79 81 80 88 82
Mean 84 85 89 86 86

Table 1.

Model without block-treatment interactions:

yij= �+ bi+ tj+ �ij i2 1:B; j=1:T

with �ij�
iid
N(0; �2) and

P
j tj=0. bis and tjs indicate block and factor effects.

There are two settings for the block effects in the model:

� Fixed block effects:
P

i=1
N bi=0 (sum to zero constraint for block effects)

� Random block effects: b1; : : : ; bB�
iid
N(0; �B2 )

Data decomposition: the observed data can be decomposed to a summation of the (estimated)
effects:

yij=y::+(yi�¡ y::)+ (y�j¡ y::)+ (yij¡ yi�¡ y�j+ y::)
=�̂+ b̂i+ t̂j+ �̂ij

ANOVA decomposition: the total sum of squares can be decomposed to:X
i

X
j

(yij¡ y::)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Total sum of squares

= t
X
i

(yi¡ y::)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Blocks

+ b
X
j

(y�j¡ y::)2|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Treatments

+
X
i

X
j

(yij¡ yi:¡ y�j+ y::)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Errors

Source SS df E(MS=SS/df)
Fixed block effects

Blocks t
P

i (yi:¡ y::)
2 b¡ 1 �2+ t (b¡ 1)¡1

P
i bi
2

Treatments b
P

j (y:j¡ y::)
2 t¡ 1 �2+ b (t¡ 1)¡1

P
j tj
2

Error
P

ij (yij¡ yi:¡ y:j+ y::)2 (b¡ 1) (t¡ 1) �2

Total
P

ij (yij¡ y::)
2 b t¡ 1
Random block effects

Blocks t
P

i (yi:¡ y::)
2 b¡ 1 �2+ t �b2

Treatments b
P

j (y:j¡ y::)
2 t¡ 1 �2+ b (t¡ 1)¡1

P
j tj
2

Error
P

ij (yij¡ yi:¡ y�j+ y::)2 (b¡ 1) (t¡ 1) �2

Total
P

ij (yij¡ y::)
2 b t¡ 1

Table 2. ANOVA table for Randomized Block Design
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2 Factorial Treatment Structure

2.1 Model Setting

Consider an experiment with two factors P and Q (P and Q may have interactions) with
levels j=1; 2; : : : ; p, and k=1; 2; : : : ; q, replicated r times (l=1; 2; : : : ; r), with model

yjkl= �jk+ �jkl

Group effect parameters:

� Grand mean: ���=(pq)¡1
P

j

P
k�jk

� Group means for factor P : �j�= q¡1
P

k�jk

� Group means for factor Q: ��k= p¡1
P

j�jk

� Effect of factor P : pj= �j�¡ ���

� Effect of factor Q: qk= ��k¡ ���

We have sum to zero constrains under this setting:

X
j

pj=0;
X
k

qk=0

Interaction effect parameters:

(pq)jk= �jk¡ (���+ pj+ qk)= (�jk¡ ��k)¡ (�j�¡ ���)

Also, we have X
j

(pq)jk=0 for all k;
X
k

(pq)jk=0 for all j

Then the model can be expand as:

�jk= ���+ pj+ qk+(pq)jk: (1)

Remark 1. p and q without subscripts denote the number of levels for fator P and Q, while pi
and qj denote the effect parameter for each level.

Example 1. (4 × 4 Design)

�jk �j: pj (p q)jk
4 10 20 30 16 -6 -3 -4 1 6
14 20 40 50 31 9 -8 -9 6 11
14 20 10 20 16 -6 7 6 -9 -4
20 30 30 20 25 3 4 7 2 -13

��k 13 20 25 30 22
qk -9 -2 3 8

Table 3. 4 × 4 design data table
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2.2 Compare differences between treatments

To compare differences between treatments, we define contrast and interaction contrast:

Definition 1. A contrast for the main effects of factor P is defined as

CP =
X
j=1

p

lj�j�;

where l1; : : : ; lp are coefficients with
P

j=1
p lj=0.

Example 2. (Simple Pairwise Comparison)

CP = �1�¡ �2�

Definition 2. An interaction contrast is defined as:

CPQ=
X
j=1

p X
k=1

q

ljmk�jk;

where m1; : : : ;mq are also coefficients with
P

k=1
q mk=0.

Example 3. Test whether the difference between levels of P depends on the level of Q.

CPQ=(�11¡ �12)¡ (�21¡ �22)

Interpretation of main and interaction effects:

1. Always start by checking main effects. Interactions modify these effects and only make
sense in that context.

2. If interactions are negligible, simplify the interpretation and focus on main effects.

3. If 3 or higher order interactions are negligible, but second-order interactions are
significant, then we should focus on both main effects and second-order interactions.

4. If a two-factor interaction is very important, and its mean square (MS) value is
similar to the MS values for main effects, then the best way to interpret results is by
looking at the mean values for two-factor combinations rather than just reporting
main effects.

5. If a  two-factor interaction is significant, but one or both main effects are much
larger than the interaction, then the interpretation should consider main effects first,
with adjustments for interaction effects.
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2.3 Least-squares estimation for an unreplicated 2×3 design

Consider a two-way factorial design with p=2 and q=3

�jk= �::+ pj+ qk+(p q)jk

1 2 3
1 y11 y12 y13
2 y21 y22 y23

Table 4.

y=

0BBBBBBBBBBBB@
y11
y12
y13
y21
y22
y23

1CCCCCCCCCCCCA=X�=

0BBBBBBBBBBBB@
1 1 1 0 1 0
1 1 0 1 0 1
1 1 ¡1 ¡1 ¡1 ¡1
1 ¡1 1 0 ¡1 0
1 ¡1 0 1 0 ¡1
1 ¡1 ¡1 ¡1 1 1

1CCCCCCCCCCCCA

0BBBBBBBBBBBB@
�::
p1
q1
q2

(p q)11
(p q)12

1CCCCCCCCCCCCA+ �

The columns of X w.r.t. different parameter groups are orthogonal. In this case, the columns
with respect to p and columns with respect to q are orthogonal. Also, they are orthogonal to the
columns w.r.t. pq. Therefore, XTX appears to be block diagonal:

X0X=

0BBBBBBBBBBBB@
6 0 0 0 0 0
0 6 0 0 0 0
0 0 4 2 0 0
0 0 2 4 0 0
0 0 0 0 4 2
0 0 0 0 2 4

1CCCCCCCCCCCCA

(X0X)¡1=

0BBBBBBBBBBBB@
1/6 0 0 0 0 0
0 1/6 0 0 0 0
0 0 1/3 ¡1/6 0 0
0 0 ¡1/6 1/3 0 0
0 0 0 0 1/3 ¡1/6
0 0 0 0 ¡1/6 1/3

1CCCCCCCCCCCCA
The least square solution gives

�̂=(X0X)¡1X0y=

0BBBBBBBBBBBB@
y::
y1�¡ y::
y�1¡y::
y�2¡ y::
y11¡ y1�¡ y�1+ y::
y12¡ y1:¡ y�2+ y::

1CCCCCCCCCCCCA:

Note that the number of parameter equals to the number of observations, X is invertible, �̂ is the
solution to X�=y.

Now we consider an additive model without interactions:

�jk= �::+ pj+ qk;
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the least square solution gives:

�̂=(XTX)¡1Xy=( y�� y1�¡ y�� y�1¡ y�� y�2¡ y�� )T ;

which align with the solution of the model with interactions. This is due to the orthogonality.

2.4 Experiment with Replication

The model for an experiment with replication can be written as:

yjkl= �+ pj+ qk+(pq)jk+ �jkl; j=1; : : : ; p; k=1; : : : q; l=1; : : : r;

where �jkl are i.i.d. N (0; �2). We can decompose data as:

yjkl= �̂+ p̂j+ q̂k+(p q)d
jk+ �̂jkl

= y���+(yj��¡ y���)+ (y�k�¡ y���)+ (yjk�¡ yj��¡ y�k�+ y���)+ (yjkl¡ yjk�):

The sum of squares are defined as:

SP=q r
X
j

(yj��¡ y���)2

SQ=p r
X
k

(y�k�¡ y���)2

SPQ=r
X
j

X
k

(yjk�¡ yj��¡ y�k�+ y���)2

SR=
X
j

X
k

X
l

(yjkl¡ yjk�)2

SD=
X
j

X
k

X
l

(yjkl¡ y���)2

Source SS df MS Ratio
Factor P SP = 1.03301 p¡ 1=2 sP

2 = 0.51651 sP
2 /sR2 = 23.22

Factor Q SB= 0.92121 q¡ 1=3 sQ
2 = 0.30707 sQ

2 /sR2 = 13.81
Interaction SPQ= 0.25014 (p¡ 1) (q¡ 1)= 6 sPQ

2 = 0.04169 sPQ
2 /sR2 = 1.87

Residual SR= 0.80073 p q (r¡ 1)= 36 sR
2 = 0.02224

Total SD= 3.00508 p q r¡ 1= 47

Table 5. ANOVA table for two factors experiments with replications

2.5 Model Checking

1. Define the estimated value of �jk under the full model as �̂jk= yjk�. Let �~jk= yj��+ y�k�¡ y���
denote the estimated value of �jk assuming no interactions.

2. To assess the homogeneity of variance in interactions, create a plot of the residuals yjkl¡ �̂jk
against the fitted values �̂jk. A consistent spread of residuals across different values of �̂jk
suggests homogeneity, while a pattern or funnel shape may indicate variance issues.

3. To detect possible nonadditivity, plot yjk¡�~jk against �~jk. If the plot exhibits a curvilinear
pattern, this suggests the presence of transformable nonadditivity, meaning that a trans-
formation of the response variable may be necessary for a better model fit.
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Figure 1. Model checking plots suggesting heteroscedasticity and non-additivity

2.6 Transformations

2.6.1 Taylor Power Transformation

Consider heterogeneous data Var(yjkl)=�jk2 and assume that �jk2 / �jk
� for some �. We can use

Taylor power transformation to deal with the heteroscedasticity (Assume yjk�> 0).

1. Calculate the sample mean yjk� and sample standard deviation sjk for each (j ; k) cell.

2. Fit a linear regression on log sjk� log yjk.

3. The fitted slope �̂ is an estimate of �.

4. Use the transformation (y�¡ 1)/� with � := 1¡ �̂.

5. If �=0, apply the log transformation yjkl� = log(yjkl).

Remark 2. Simple power transformation uses y�, which doesn't smoothly transit to log y as �!0.

Justification for the method:

Define

z= f�(y)=

(
(y�¡ 1)/�; �=/ 0
log y; �=0

(2)

By Taylor expansion:

zjkl= f�(yjkl)� f�(�jk)+ f�
0(�jk) (yjkl¡ �jk):

Since f 0(y)= y�¡1,

Var(zjkl)�(f�0(�jk))2Var(yjkl)
=�jk

2(�¡1)
�jk
2

/�jk
2(�¡1)

�jk
2�

=�jk
2(�¡1+�)

;

and Var(zjkl) becomes a constant if �=1¡ �.
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Figure 2. Power transformations

2.6.2 Box-Cox Transformation

Assumptions: There exists a � such that ff�(yi)gi=1n :

� are mutually independent

� are normally distributed

� have constant variance

� satisfy a linear model f�(y)=X�+ 𝛜

2.6.3 Maximum Likelihood Estimation of Box-Cox �

Assume y(�)= f�(y)=X�+ 𝛜 where f� is defined in (2) with 𝛜�N (0; �2I) for some �. Then the
likelihood function for the untransformed data follows:

L(�; �; �)= 1
(2��2)n/2

exp

(
¡(y

(�)¡X�)T (y(�)¡X�)
2 �2

)
J(�;y)

with Jacobian

J(�; y)=
Y
i=1

n

yi
�¡1

We first find the LSEs of � and �� for fixed �:

�̂�=(XTX)¡1XTy(�); �̂�=
(y(�)¡X�̂�)T (y(�)¡X�̂�)

n¡ p¡ 1 ;

then we have

`(�; �̂�; �̂�)=
exp (¡(n¡ p¡ 1)/2)

(2�)n/2 �̂�n
J(�;y)

=�̂�
¡n
Y
i=1

n

yi
�¡1 exp (¡(n¡ p¡ 1)/2)

(2�)n/2
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Let `(�)= logL(�; ��̂; �̂�), and find the MLE �̂ that maximizes `(�).

The confidence interval follows from the standard result that the log-likelihood ratio statistic
follows a chi-square distribution with 1 degree of freedom

2(`(�̂)¡ `(�))� �12:

Then the confidence interval is the root for `(�)= `(�̂)¡ 0.5�1;�2 .

Remark 3. The boxcox function in MASS library gives the MLE of �.

library(MASS)
bc <- boxcox(y ~ p+q)
title(paste("Without interaction, lambda =",round(bc$x[which.max(bc$y)],2)))
bc <- boxcox(y ~ p*q)
title(paste("With interaction, lambda =",round(bc$x[which.max(bc$y)],2)))

Figure 3. Likelihood of Box-Cox Transformation

Example 4. For the Poison data, we present the ANOVA table after the two transformations.

Df Sum Sq Mean Sq F value P-value
Poison 2 34.877 17.4386 70.6302 5.17e¡13
Treatment 3 20.414 6.8048 27.5610 2.48e¡09
Interaction 6 1.571 0.2618 1.0603 0.4046
Residuals 35 8.643 0.2469
Poison 2 11.926 5.9631 66.5525 1.18e¡12
Treatment 3 7.158 2.3860 26.6295 3.76e¡09
Interaction 6 0.486 0.0810 0.9040 0.5032
Residuals 35 3.136 0.0896

Table 6. ANOVA table after simple Taylor power transformation (y(�)= y� with �=¡1) (above) and Box-
Cox transformation (below).

Remark 4. The residual Df is reduced by 1 to compensate for the estimation of �.
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2.7 Confidence Intervals

2.7.1 When interactions are not significant

Let uj = � + pj and vk = � + qk. Let the unbiased estimators be ûj = yj�� and v̂k = y�k� with
Var(ûj)=�2/(pr), Var(v̂k)=�2/(qr). The sample standard deviation is

s(ûj)=SR/ pr
p

; s(v̂k)=SR/ qr
p

:

Then 100(1¡ �)% confidence interval for uj is ûj � t�R;�/2� se(ûj), where �R= pq(r ¡ 1) is the
degree of freedom for SR.

For simultaneous confidence intervals, we define the contrast of interest be

L=
X
j=1

p

cjuj ; where
X
j=1

p

cj=0

with its estimator

L̂=
X
j=1

p

cjyj�� with s(L̂)=SR (qr)¡1
X
j=1

p

cj
2

s

Then a 100(1¡�)% simultaneous confidence interval for L takes the form:

L̂�Ts(L̂);

where T is a multiplier that depends on the type of the inference method used.

1. Tukey's Method (Pairwise Comparisons): Tukey's method is designed for simulta-
neous confidence intervals when comparing all possible pairwise differences between group
means. The multiplier is:

T = q(p; �R;�)
2

p

where q(p; �R; �) is the studentized range statistic for p groups and residual degrees of
freedom �R.

When comparing all pairs, each pairwise difference is a contrast (with coefficients cj=1 for
one group and cj=¡1 for the other, and 0 elsewhere). Each interval is given by:

CI for (uj¡uk):AC (yj��¡ yk)�
q (p; �R;�)

2
p sR

12+(¡1)2
q r

r

Here, the multiplier q (p; �R;�)

2
p is applied to each pairwise contrast.

2. Scheffé's Method (All Contrasts): Scheffés method is more conservative and applies to
all possible contrasts, not just pairwise comparisons. The multiplier is:

T = (p¡ 1)F(p¡1);�R;�
q

where F(p¡1);�R;� is the critical value from the F-distribution with p¡ 1 and �R degrees of
freedom.
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For any contrast L=
P

j cjuj, the simultaneous confidence interval is:

L̂� (p¡ 1)F(p¡1);�R;�
q

SR
1
q r

X
j

cj
2

s

This interval applies to every possible contrast you might form.

3. Bonferroni's Method (For g Comparisons): The Bonferroni method controls the fam-
ilywise error rate by adjusting the significance level for multiple comparisons. For any set
of g comparisons, the multiplier is:

T = t�R;�/(2g)

where t�R;�/(2g) is the t-distribution critical value with residual degrees of freedom �R and
a Bonferroni-adjusted significance level of �/(2 g).

If you have a specific set of g comparisons (contrasts) you plan to test, each interval is:

L̂� t�R;�/(2g)SR
1
q r

X
j

cj
2

s
:

Each of the g contrasts gets its own interval, with the critical value adjusted by dividing �
by 2 g.

2.7.2 When interactions are significant

In this case, each combination of factor levels has its own mean:

�jk= �+ pj+ qk+(pq)jk

If we are interested in comparing the means of two specific treatment combinations, say �j1k1 and
�j2k2, we are comparing two of the pq treatments.

1. Tukey's Method: for all possible pairs of treatment means,

(�̂j1k1¡ �̂j2k2)�
q(p q; �R;�)

2
p SR

2
r

r
where q(pq; �R;�) is the quantile of the studentized range statistic for pq treatments and
�R is the residual degrees of freedom.

2. Bonferroni's Method: for g pairs of comparisons,

(�̂j1k1¡ �̂j2k2)� t�R;�/(2g) sR
2
r

r
;

where t�R;�/(2g) is the quantile from t-distribution.

3. Scheffé's Method for General Contrasts: the contrast takes the form:

L=
X
j=1

p X
k=1

q

cjk�jk; with
X
j;k

cjk=0

The confidence interval for the contrast L is given by:

L̂� (p q¡ 1)F(pq¡1);�R;�
q

s(L̂)
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where:

� L̂=
P

j;k cjk�̂jk,

� s(L̂)= sR
P

j;k

cjk
2

r

r
(assuming balanced replication),

� F(pq¡1);�R;� is the critical value from the F -distribution with pq¡ 1 and �R degrees
of freedom.

2.8 Two-way Factorial with Blocks

2.8.1 No Replicates Within Blocks

Model:

yijk= �+ bi+ tjk+ "ijk= �+ bi+ pj+ qk+(pq)jk+ "ijk

for i=1; : : : ; b, j=1; : : : ; p, and k=1; : : : ; q, with sum-to-zero constrains:X
i

bi=
X
j

pj=
X
k

qk=0:

Data decomposition:

yijk=y���+(yi��¡ y���)+ (y�jk¡ y���)+ (yijk¡ yi��¡ y�jk+ y���)
=y���+(yi��¡ y���)+ (y�j�¡ y)+ (y��k¡ y���)
+(y�jk¡ y�j�¡ y��k+ y���)+ (yijk¡ yi��¡ y�jk+ y���)

Source SS df
Blocks p q

P
i (yi��¡ y���)

2 b¡ 1
P b q

P
j (y�j�¡ y���)

2 p¡ 1
Q b p

P
k (y��k¡y���)

2 q¡ 1
PQ b

P
j

P
k (y�jk¡ y�j�¡ y��k+ y���)2 (p¡ 1) (q¡ 1)

Residual
P

i

P
j

P
k (yijk¡ yi��¡ y�jk+ y���)2 (b¡ 1) (p q¡ 1)

Total
P

i

P
j

P
k (yijk¡ y���)

2 b p q¡ 1

Table 7. ANOVA table for two-way factorial with blocks and without replicates

2.8.2 With Replicates Within Blocks

Model:

yijkl= �+ bi+ tjk+ "ijk= �+ bi+ pj+ qk+(pq)jk+ "ijkl

or i=1; : : : ; b, j=1; : : : ; p, l=1; : : : ; r, and k=1; : : : ; q, with sum-to-zero constrains:X
i

bi=
X
j

pj=
X
k

qk=0:

Data decomposition:

yijkl=y����+(yi���¡ y����)+ (y�j��¡ y����)+ (y��k�¡ y����)
+(y�jk�¡ y�j��¡ y���k+ y����)+ (yijkl¡ yi���¡ y�jk�+ y����)
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Source SS df
Blocks p qr

P
i (yi���¡ y����)

2 b¡ 1
P b qr

P
j (y�j��¡ y����)

2 p¡ 1
Q b p r

P
k (y��k�¡y����)

2 q¡ 1
PQ b

P
j

P
k (y�jk�¡ y�j��¡ y��k�+ y����)2 (p¡ 1) (q¡ 1)

Residual
P

i

P
j

P
k

P
l (yijkl¡ yi���¡ y�jk�+ y����)2 bpqr¡ b¡ pq+1

Total
P

i

P
j

P
k

P
l (yijkl¡ y����)

2 b p qr¡ 1

Table 8.

2.8.3 Advantages of Two-level Factorial Designs

1. Efficiency in runs: They require only a few experimental runs per factor, making them
cost-effective and time-saving even when several factors are under study.

Two-level factorial designs use only two settings per factor, which are chosen to maximize
the contrast between high and low values. This strong contrast helps in estimating the main
effects with greater clarity.

2. Identifying Major Trends: While they don't cover the entire range of possible factor
values, these designs help reveal the main effects and trends, pointing toward areas that
merit further investigation.

3. Flexible Augmentation: If more detailed local analysis is needed later, two-level designs
can be expanded or combined with additional points (composite designs) to explore the
factor space more thoroughly.

4. Modular Design Building: They serve as building blocks. By combining them appropri-
ately, you can tailor the complexity of the experimental design to match the sophistication
of the problem at hand.

5. Precision in Effect Estimation: With fewer runs and a clear structure, the estimates of
the main effects of factors are generally precise.

6. They form the basis for two-level fractional factorial designs.

3 Factorial Design

3.1 Comparison of designs

3.1.1 OFAT v.s. Factorial

OFAT Experiments: An experimental approach in which only one factor (independent vari-
able) is varied at a time while keeping all other factors constant. The goal is to observe the effect
of that single factor on the response variable.

22 Factorial Design: an experimental design where there are two factors, each with two
levels (e.g., "low" and "high"). This results in 22=4 experimental runs, covering all possible
combinations of factor levels.

Example 5. OFAT Design: An engineer designed an experiment to compare a standard and a
new gas anneal process by varying pressure and temperature across three runs:

1. Standard pressure & standard temperature

2. Standard pressure & new temperature
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3. New pressure & new temperature

A single lot of 48 wafers was used, with 16 wafers assigned to each run.

Temperature
Pressure Standard New
Standard 16 wafers 16 wafers

New - 16 wafers

Table 9. OFAT Design Figure 4. OFAT Design

22FactorialDesign:

Temperature
Pressure Standard New
Standard 12 wafers 12 wafers

New 12 wafers 12 wafers

Table 10. 22 Factorial Design Figure 5. 22 Factorial Design

Advantages of 22 Factorial Design:

1. Estimates of the factor effects are more precise (all 48 wafers are used, while only 32 wafers
in the OFAT design)

a. Variance of each effect is �2/12 for the 22 design.

b. Variance of each factor effect for the OFAT is �2/8(50% more).

2. Interaction effect can be estimated.

3. 22 design provides data over a broader factor space.

3.1.2 Central Composite Design

Example 6. Two engineers planned an experiment for a rapid thermal anneal process. They
wanted to study the sensitivity of the response sheet resistance to two factors�time and temper-
ature. The followings are 3 different designs

Figure 6. OFAT Design Figure 7. 22 Design Figure 8. Central Composite
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Central Composite Design (CCD): is a type of Response Surface Methodology (RSM)
used for building a quadratic model in experimental designs. It helps optimize processes by
exploring both linear and interaction effects, as well as curvature in factor responses. It contains
the following components:

� Factorial Points: A full or fractional factorial design that represents the main effects and
interactions.

� Axial (Star) Points: Points placed outside the factorial design to capture curvature and
quadratic effects.

� Center Points: Replicated runs at the center of the design space to improve model accuracy
and detect pure error.

Type X1 X2

Factorial Points ¡1;+1 ¡1;+1
Axial Points �� ��
Center Points 0 0

Table 11. Example of CCD with two factors

Advantages of Central Composite Design:

1. Estimates of factor effects are more precise

2. Interactions can be estimated

3. Curvature can be estimated in the entire space

4. Optimization is possible for the entire space

5. If center point is replicated 4 times, the design is rotatable, i.e., equal precision in estimation
at all points equidistant from the center

3.1.3 23 Design

Example 7. 3-factor OFAT design & 23 experiment

Figure 9. 3-factor OFAT in 15 runs Figure 10. 23 experiment in 8 runs

Advantages of the 23 design:

1. Requires less resources: 8 runs instead of 15.
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2. Estimates of factor effects are more accurate: all 8 runs are used in each estimate. But in
OFAT, only 5 runs are used in each estimate.

3. Interaction effects can be estimated.

4. 23 design yields information over a larger region of the factor space

3.1.4 Box-Behnken design

Figure 11. Box-Behnken design in 15 runs

Advantages of Box-Behnken Design:

1. Interactions can be estimated in Box-Behnken design.

2. Runs are more evenly spread out�hence more accurate predictions while OFAT can esti-
mate curvature along 3 lines only.

3. Box-Behnken can estimate curvature in entire experimental region.

4. Box-Behnken design can be optimized over entire factor space while OFAT can be optimized
along 3 lines only.

3.2 Analysis of Factorial Design

3.2.1 22 Design

Notation 1. We use the following notations to represent factors and interactions in a 22 design:

� Two factors A and B, each at two levels.

� 4 sets of experimental conditions. �Low� indicated by �¡� and �high� indicated by �+�.

� Use notation (1), a, b, ab to denote the mean responses at the treatment combinations listed
in figure 12.

17



Figure 12. Notations in a 22 design

Model:

yijk= �+�i+ �j+(��)ij+ "ijk (3)

with sum-to-zero constrains:

�1+�2= �1+ �2=(��)11+(��)12=(��)21+(��)22=(��)11+(��)21=0:

Define �2=�, �2= �, then we can write

�1=¡�; �1=¡�; (��)21=¡(��); (��)11=(��); (��)12=¡(��)

i j A B Observation Without constraints With constraints
1 1 - - (1) �+�1+ �1+(��)11 �¡�¡ �+(��)
2 1 + - a �+�2+ �1+(��)21 �+�¡ � ¡ (��)
1 2 - + b �+�1+ �2+(��)12 �¡�+ � ¡ (��)
2 2 + + ab �+�2+ �2+(��)22 �+�+ �+(��)

Table 12. Summary of 22 design model

Then we have the least square estimates of the parameters:

�̂=[a b+ a+ b+(1)]/4= y:::

�̂=[a b+ a¡ b¡ (1)]/4

�̂=[a b¡ a+ b¡ (1)]/4

(��)d =[a b¡ a¡ b+(1)]/4

Remark 5. The interaction coefficients cancel out because of the sum-to-zero constrains.

The main effect of A is defined as:

A=2 �̂= [a b+ a¡ b¡ (1)]/2
=[a b+ a]/2¡ [b+(1)]/2

=(1/2) f[a b¡ b] + [a¡ (1)]g

The interaction effect is defined as:

AB=2 (��)d
=[a b¡ a¡ b+(1)]/2

=(1/2) f[a b¡ b]¡ [a¡ (1)]g
=(1/2) f[a b¡ a]¡ [b¡ (1)]g
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Notation 2. We use upraight letters to denote the factors, and use italic letters to denote the
effects defined above.

3.2.2 Generalization to 23 Design

Figure 13. 23 design

Mean effect of A:

A=(a+ a b+ a c+ a b c)/4¡ ((1)+ b+ c+ b c)/4
=mean of high A¡mean of low A

=(1/4) f(a¡ (1))+ (a b¡ b)+ (a c¡ c)+ (a b c¡ b c)g
=mean of 4univariate A effects

=(1/2) [fa b c+ a c¡ b c¡ cg/2+ fa b+ a¡ b¡ (1)g/2]
=(1/2) fEffect in A-B design at high C+Aeffect in A-B design at low Cg

Interaction Effects:

� The 23 consists of two 22 designs: one at high C and one at low C

� AB interaction at low C is AB1=(a b+(1)¡ a¡ b)/2

� AB interaction at high C is AB2=(a b c+ c¡ a c¡ b c)/2

� AB and ABC effects for 23 are defined as

AB=(1/2) (AB2+AB1)= (1/4) (a b c+ c¡ a c¡ b c+ a b+(1)¡ a¡ b)
ABC=(1/2) (AB2¡AB1)= (1/4) (a b c+ c¡ a c¡ b c¡ a b¡ (1)+ a+ b)

Alternative Expressions:

The LSEs

�̂=[a b c+ a b+ a c+ b c+ a+ b+ c+(1)]/8

A=[a b c+ a b+ a c+ a¡ b c¡ b¡ c¡ (1)]/4
AB=[a b c+ a b¡ a c¡ b c¡ a¡ b+ c+(1)]/4

ABC=[a b c¡ b c¡ a c¡ a b+ a+ b+ c¡ (1)]/4
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Combining the expressions, we have:

�̂=(a+1) (b+1) (c+1)/8

A=(a¡ 1) (b+1) (c+1)/4

AB=(a¡ 1) (b¡ 1) (c+1)/4

ABC=(a¡ 1) (b¡ 1) (c¡ 1)/4

� Variance of any effect estimation is var(effect) =4N¡1 �2, where N is total number of
observations and �2= var(�)

� Let si2 be the estimate of �2 at the i th treatment combination (i=1;2;:::; g). Let �i= ri¡1
be the degrees of freedom for si2, where ri is the number of replicates in rth combination.
Then the pooled estimate of �2 is:

s2=
�1 s1

2+ � � �+ �g sg2

�1+ � � �+ �g

� Confidence intervals for estimated effects may be obtained using the Bonferroni method.

� Hidden replication property: When estimating the effect of a single factor (say, A) in a 23

design (with factors A, B, and C), the precision of the estimate for A is the same as it would
be if you had conducted an experiment with only A at two levels with the same number of
replications (for example, 4 runs at low A and 4 runs at high A).

We may use a table of contrast to summary the result of a 23 design. The �Dot product� in this
table refers to the inner product between each column (e.g. A) and the response vector y, and
Dividing it by N /2 gives the estimate of the corresponding effect.

A B C AB AC BC ABC y

¡1 ¡1 ¡1 1 1 1 ¡1 60
1 ¡1 ¡1 ¡1 ¡1 1 1 72
¡1 1 ¡1 ¡1 1 ¡1 1 54
1 1 ¡1 1 ¡1 ¡1 ¡1 68
¡1 ¡1 1 1 ¡1 ¡1 1 52
1 ¡1 1 ¡1 1 ¡1 ¡1 83
¡1 1 1 ¡1 ¡1 1 ¡1 45
1 1 1 1 1 1 1 80

Dot product 92 ¡20 6.0 6.0 40 0 2.0
Division by N /2 23 ¡5 1.5 1.5 10 0 0.5

Table 13. Table of contrast example

Notation 3. (Notation summary)We use upright letters (e.g. A, AB) to represent the factor or
the corresponding columns in the table of contrast, and use italic letters (e.g. A, AB) to represent
the corresponding effects defined in section 3.2.1.

3.2.3 Regression Formulation

The model of 23 design can be written as:

E(yijk)= �+�i+ �j+ 
k+(��)ij+(�
)ik+(� 
)jk+(��
)ijk

For an observation yl, Let xil=1 indicate the ith factor is at its high level and xil=¡1 indicate
the ith factor is at its low level. Then we can write

E(yl)= �0+ �1x1l+ �2x2l+ �3x3l+ �12x1lx2l+ �13x1lx3l+ �23x2lx3l+ �123x1lx2lx3l:
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The LSEs are:

�̂=�̂0= [a b c+ a b+ a c+ b c+ a+ b+ c+(1)]/8

A=2 �̂1= [a b c+ a b+ a c+ a¡ b c¡ b¡ c¡ (1)]/4

AB=2 �̂12= [a b c+ a b¡ a c¡ b c¡ a¡ b+ c+(1)]/4

ABC=2 �̂123= [a b c¡ b c¡ a c¡ a b+ a+ b+ c¡ (1)]/4; etc.

The general 2k design model can be written in a matrix form:

y=X�+ �;

where y is the vector of observations and when k=3:

X=

0BBBBBBBBBBBBBBBBBBBB@

1 ¡1 ¡1 ¡1 1 1 1 ¡1
1 1 ¡1 ¡1 ¡1 ¡1 1 1
1 ¡1 1 ¡1 ¡1 1 ¡1 1
1 1 1 ¡1 1 ¡1 ¡1 ¡1
1 ¡1 ¡1 1 1 ¡1 ¡1 1
1 1 ¡1 1 ¡1 1 ¡1 ¡1
1 ¡1 1 1 ¡1 ¡1 1 ¡1
1 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCA
; �=

0BBBBBBBBBBBBBBBBBBBB@

�
�
�


(��)
(�
)
(� 
)
(��
)

1CCCCCCCCCCCCCCCCCCCCA
Note that X is an orthogonal matrix, then XTX=2kI is an diagonal matrix, and we have

�̂=2¡kXTy:

3.3 Yates Algorithm for 2k Experiments
Yates algorithm is a systematic computational procedure used to analyze data from a full 2k

factorial experiment. In these experiments, you have k factors, each at two levels (often labeled
as "low" and "high"). The algorithm helps you calculate the main effects and interaction effects
quickly and efficiently.

1. Order the Data:
List the experimental data in the standard order (the order shown in the 1st column of table 14).

2. Construct k New Columns:
For each new column (starting from the first column of responses), perform the following:

� Addition (First Half):
For the first 2k¡1 entries, form each new entry by adding pairs of consecutive entries from
the previous column. That is, for row i, compute:

New entry=(entry in row 2 i¡ 1)+ (entry in row 2 i):

� Subtraction (Second Half):
For the remaining 2k¡1 entries, compute each new entry by subtracting the entry in row
2i¡ 1 from the entry in row 2i in the previous column:

New entry=(entry in row 2 i)¡ (entry in row 2 i¡ 1):

3. Create a Scaling Column:
Add an additional column (the (k+1)th column) where all entries are 2k¡1, except the first entry,
which is 2k.

4. Compute the Estimates:
Obtain the effect estimates by dividing the entries in the kth column by the corresponding entries
in the (k+1)th (scaling) column.
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5. Identify the Effects:
Determine the identity of each effect by inspecting the signs of the factors along each row in the
table.

A B C y (1) (2) (3) Div. Est. Effect
¡1 ¡1 ¡1 60 132 254 514 8 64.25 y�
1 ¡1 ¡1 72 122 260 92 4 23.00 A

¡1 1 ¡1 54 135 26 ¡20 4 ¡5.00 B
1 1 ¡1 68 125 66 6 4 1.50 AB

¡1 ¡1 1 52 12 ¡10 6 4 1.50 C
1 ¡1 1 83 14 ¡10 40 4 10.00 AC

¡1 1 1 45 31 2 0 4 0.00 BC
1 1 1 80 35 4 2 4 0.50 ABC

Table 14. Example of data table created by Yates algorithm

3.4 Factorial Design with blocks

3.4.1 22 Design in 2 Blocks of Size 2

Let x1; x2; z 2f¡1; 1g, where x1; x2 indicates levels of A and B and z indicates the block variables.
The model is defined as

y= �0+ �1x1+ �2x2+ �12x1x2+ �z+ "

Figure 14. 22 design with blocks

Consider 3 possible designs:

� D1. (1), a in block 1; b; a b in block 2

� D2. (1), b in block 1; a; a b in block 2

� D3. (1), a b in block 1; a; b in block 2

In D1, B is confounded by the block effect because z=x2 leads to:

E(ab+ b¡ a¡ (1))= 4�2+4�;

while A and AB are not confounded.

3.4.2 23 in 2 Blocks of Size 4

OFAT Block Design:
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Figure 15. OFAT block design. Different colors indicate the experiment is conducted in different blocks.

A B C AB AC BC ABC Block
(1) ¡ ¡ ¡ + + + ¡ ¡
a + ¡ ¡ ¡ ¡ + + ¡
b ¡ + ¡ ¡ + ¡ + ¡
ab + + ¡ + ¡ ¡ ¡ +
c ¡ ¡ + + ¡ ¡ + ¡
ac + ¡ + ¡ + ¡ ¡ +
bc ¡ + + ¡ ¡ + ¡ +
abc + + + + + + + +

Table 15. Treatment table of OFAT block design

The corresponding model is:

y= �0+ �1x1+ �2x2+ �3x3+ �12x1x2+ �13x1 x3+ �23 x2x3+ �123x1 x2x3+ � z+ � (4)

A is confounded in the design shown in Figure 15 and Table 15 because the expression

A= [a b c+ a b+ a c+ a¡ b c¡ b¡ c¡ (1)]/4

cannot eliminate � if we plug in (4).

We may change the design of the experiment to make the parameters of interest unfounded while
some other parameters confounded. As shown in table 16, we can make the assignment of blocks
exactly the same as the assignment of the 3-way interaction ABC. By doing this, only ABC is
confounded in our data. However, we can never make all the parameters unconfounded if we have
to impose 2 blocks of size 4.

A B C AB AC BC ABC Block
(1) - - - + + + - -
a + - - - - + + +
b - + - - + - + +

ab + + - + - - - -
c - - + + - - + +
ac + - + - + - - -
bc - + + - - + - -
abc + + + + + + + +

Table 16. Experimental design such that only ABC is confounded.

Remark 6. In a 2k design in 2 blocks, we usually use the largest-order interaction column to
define the assignment of blocks such that only the highest order interaction is confounded.
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3.4.3 23 in 4 Blocks of Size 2

If we have 4 blocks, we need two block variables X;Y 2f¡1;1g to represent the block combinations
in the table.

A B C AB AC BC ABC X Y
(1) - - - + + + - + +
a + - - - - + + - +
b - + - - + - + - -
ab + + - + - - - + -
c - - + + - - + + -
ac + - + - + - - - -
bc - + + - - + - - +

abc + + + + + + + + +

Table 17. 23 design with blocks of size 2

If we put the columns X =AB; Y =BC, then all the two-way interactions are confounded while
the other parameters are not.

3.4.4 24 in 4 blocks

A B C D ABC ABD CD Block
- - - - - - + 1
+ - - - + + + 4
- + - - + + + 4
+ + - - - - + 1
- - + - + - - 3
+ - + - - + - 2
- + + - - + - 2
+ + + - + - - 3
- - - + - + - 2
+ - - + + - - 3
- + - + + - - 3
+ + - + - + - 2
- - + + + + + 4
+ - + + - - + 1
- + + + - - + 1
+ + + + + + + 4

Table 18. 24 design with blocks of size 2

Use ABC and ABD to define blocks as shown in figure 18, then CD is confounded as well since
ABC�ABD=CD.

3.4.5 Partial Confounding

4 Fractional two-level designs
2k designs include too many interactions and variables when k is large. But in most cases we are
only interested in few of them. Fractional factorial design reduce the number of experiments
by assuming many higher-order interactions are negligible and we only care about main effects and
two-factor interactions.

4.1 Half-fraction of 23

Assume that all interactions are negligible, then the model can be written as

y= �+�x1+ �x2+ 
x3+ "; x1; x2; x3=�1 (5)
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Now we investigate different experimental designs.

1. Design 1 (OFAT): Using runs (1), a, b and c, i.e. using the design matrix:

X =

0BBBBBB@
1 ¡1 ¡1 ¡1
1 1 ¡1 ¡1
1 ¡1 1 ¡1
1 ¡1 ¡1 1

1CCCCCCA;
and the covariance matrix for the estimation is:

�2(XTX)¡1=�2

0BBBBBB@
1 1/2 1/2 1/2
1/2 1/2 1/4 1/4
1/2 1/4 1/2 1/4
1/2 1/4 1/4 1/2

1CCCCCCA
2. Design 2: Using runs a, b, c, and abc, i.e. using the design matrix:

X =

0BBBB@
1 1 ¡1 ¡1
1 ¡1 1 ¡1
1 ¡1 ¡1 1
1 1 1 1

1CCCCA;
and the covariance matrix for the estimation is

�2(XTX)¡1=�2

0BBBB@
1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4

1CCCCA

4.2 Construction of 25¡1 design

1. Write a full 24 design in variables A, B, C and D

2. Add a column of signs for factor E defined by E=ABCD

Notation 4. Product of upright letters (e.g. ABCD) is a shorthand for taking Hadamard (element-
wise) product of the corresponding column vector in the design table.

A B C D E A B C D E
- - - - + - - - + -
+ - - - - + - - + +
- + - - - - + - + +
+ + - - + + + - + -
- - + - - - - + + +
+ - + - + + - + + -
- + + - + - + + + -
+ + + - - + + + + +

Table 19. E=ABCD design

The equation

E=ABCD
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is called the generator of the design. Multiplying both sides of the generator by E gives:

I=ABCDE; (6)

where I is a column of positive signs and (6) is called the defining relation of the design. We can
easily obtain its confounding pattern by multiplying (6) on both sides by any main or interaction
effect, e.g., A=BCDE, B=ACDE, AB=CDE, which means the effects on both sides of the equality
is confounded with each other. The expected values of the estimations are:

E(y�1)=�+ABCDE/2

E(Â1)=A+BCDE

���
E(ABd1)=AB+CDE

���
E(ABC1)=ABC +DE

���

E(ABCD1)=ABCD+E

Combining two half-fractions. Suppose we are allowed to run another 25¡1 experiment with

defining relation E=¡ABCD. Let � be the block effect of the second run, Â2; : : : ;ABCD2 be the
estimations for the corresponding effects in the second run, then we have

E(y�2)=�+ �¡ABCDE/2

E(Â2)=A¡BCDE

���
E(ABd2)=AB ¡CDE

���
E(ABC2)=ABC ¡DE

���

E(ABCD2)=ABCD¡E:

Thus, we can obtain unbiased estimation of each effect by combining two estimations. e.g.

E[(Â1+ Â2)/2]=A

E[(ABc 1+ABc 2)/2]=AB;

while the grand mean is still confounded by the block effect �.

4.3 Resolution

Definition 3. The resolution of a two-level fractional design is length of the shortest non-identity
word in the defining relation.

Interpretation: A design with Resolution R means that Any p-factor effect (an effect that
involves p factors, such as a main effect where p=1 or an interaction where p>1) is not confounded
with any other effect that involves fewer than R¡ p factors.

� A design with Resolution III means that while the mean effect are not aliased with one
another, they may be aliased with two-factor interactions.
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� A design with Resolution IV ensures that main effects are unconfounded with two-factor
interactions while two-factor interactions might be aliased with each other.

� In a Resolution V design, main effects and two-factor interactions are not aliased with
each other. In other words, any confounding (aliasing) involves interactions of order three
or higher.

4.3.1 Half-fractional design for the highest resolution

To construct a half-fraction of the highest resolution (i.e., a 2k¡1 design) with maximal clarity for
estimating lower-order effects:

1. Start with a Full Factorial: Construct a full 2k¡1 factorial design for the first k¡ 1 factors.

2. Generate the k th Factor: Define the k th factor as the product of the first k ¡ 1 factors
(i.e., xk=x1�x2� � � � �xk¡1 ). This leads to the defining relation:

I=F1F2: : :Fk

where Fi denotes the ith factor, and the defining relation has length k.

This approach produces the highest possible resolution for a 2k¡1 design because a longer defining
word (length k ) ensures that any aliasing only involves high-order interactions (order k or more).
As a consequence, main effects and low-order interactions (which are usually of primary interest)
remain unconfounded, maximizing the interpretability of the experimental results.

Remark 7. If we remove any one column in a 2k¡1 design, the remaining four columns form a
complete 2k factorial. A fractional factorial design of resolution R is constructed in such a way
that every R¡ 1 factors appears as a complete factorial.

4.3.2 Sequential use of fractional designs

It is generally advisable for an experimenter planning a 25 design in 32 runs to first conduct a half-
fraction (16 runs), review the results, and then decide how to proceed. Here are the key points:

1. Within-Fraction Randomization:
Randomize the order of runs within each half-fraction.

2. Orthogonal Blocking When Combining Fractions:
If you choose to run another fraction later, structure them as randomized orthogonal blocks of the
complete factorial design.

3. Retention of Information:
No information is lost except for the interaction effect that becomes confounded with the block
effect.

4. Enhanced Precision:
Running the design as two randomized fractions can provide greater precision than a full random
order because the block effect is removed.

4.3.3 Construction of Resolution III designs

Resolution III designs involving 2k¡ 1 variables can be constructed by "saturating" a 2k factorial
design with additional variables. For instance, let k=4, a 2III

15¡11 design (a design with 215¡11 runs
and resolution III) may be obtained by the following procedure:

1. Full Factorial Formation:
Start by constructing a full factorial design on variables 1, 2, 3, and 4.
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2. Association with Interaction Columns:
Assign the additional variables, numbered 5 through 15, to the 11 interaction columns corre-
sponding to the interactions:

�F1F2; �F1F3; �F1F4; �F2F3; �F2F4; �F3F4;
�F1F2F3; �F1F2F4; �F1F3F4; �F2F3F4; �F1F2F3F4:

In this context, each distinct assignment of the � signs to these interaction terms defines
one fraction of the design.

Example 8. ( 2III
7¡4 design) Use generators F4=F1F2, F5=F1F3, F6=F2F3 and F7=F1F2F3

1 2 3 4 5 6 7
- - - + + + -
+ - - - - + +
- + - - + - +
+ + - + - - -
- - + + - - +
+ - + - + - -
- + + - - + -
+ + + + + + +

Table 20. 2III
7¡4 design

If we run another half-fractional design by switching the sign for 4, 5, 6, 7, then F4=-F1F2,

F5=-F1F3, F6=-F2F3 and F7=-F1F2F3 then the shortest defining relation becomes

I= (F1F2 �F4)(F1F3 �F5)=F2F4F3F5:

The resolution is 4 and we therefore have a 2IV
7¡3 design.

4.3.4 Plackett-Burman Designs

Saturated fractional factorial designs are valued for their orthogonality: in any two columns of the
design matrix, exactly half the runs in column A are �+,� and among those, half are �+� and half
��� in column B; the same balance holds for the runs where column A is ��.� Under the assumption
that all interactions are negligible, this balance guarantees unbiased, minimum‐variance estimates
of all main effects for k=N ¡ 1 factors in just N runs.

� Classical limitation: Regular 2k¡pdesigns exist only when N is a power of 2.

� Plackett & Burman (1946): Extended this orthogonality to any N that is a multiple of
4, allowing efficient main‐effects screening with non�power‐of‐2 runs.

� Example (k= 11, N = 12):

1. Write the first row of 11 signs (e.g. �+ � + + � :::�). If you have a Hadamard matrix
of order N , remove the 1 column. Any one of the remaining rows of length N ¡ 1
can be the first row. Standard choices of first rows are summarized in table 35.

2. Generate each subsequent row by cyclically shifting the previous row one column to
the right.

3. Add a final 12th row of all ��� signs.
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This simple �shifted‐row� construction produces a 12�11 Plackett�Burman design that retains the
key orthogonality property for unbiased estimation of main effects.

Run 1 2 3 4 5 6 7 8 9 10 11
1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + - + + - + - -
8 - - + + + - + + - + -
9 - - - + + + - + + - +
10 + - - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

Table 21. Plackett-Burman design for k= 11 and N = 12

4.3.5 Construction of Resolution IV Designs

You can obtain a 2IV
k¡p design from any resolution III fraction in three steps:

1. Base Fraction (Resolution III):
Construct a 2III

(k¡1)¡p design on the first k¡ 1 factors.

2. Add a �Pure� Column:
Append a kth factor column consisting entirely of �+� signs to that design.

3. Foldover:
Create a second block of runs by flipping every sign in the first block. Together, the original block
and its foldover form a resolution IV design on k factors.

Example 9. Constructing a 2IV
7¡3 design from 2III

6¡3 Design

1. Base 2III
6¡3 Design. Define the generators:

F4=F1F2; F5=F1F3; F6=F2F3:

The defining relation for the first 26¡3=8 runs is:

I=F1F2F4=F1F3F5=F2F3F6:

2. Add the seventh factor F7. Assign F7=+1 in the first half, introducing the word

I=F7:

3. Fold‑over to Resolution IV. Create a second set of 8 runs by flipping every sign in the
first half. Its defining relation becomes:

I =¡F1F2F4=¡F1F3F5=¡F2F3F6=¡F7:

4. Combine Both Halves.When the two halves are pooled, each length‑3 word appears once
with �+� and once with ��,� so they cancel. The shortest remaining aliasing words involve
four factors, yielding a resolution IV design.
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Example 10. Constructing a 2IV
7¡3 design from 2III

7¡4 Design.

1. Base 2III
7¡4 design: Use generators

F4=F1F2; F5=F1F3; F6=F2F3; F7=F1F2F3:

Its defining relation is

I1=F1F2F4=F1F3F5=F2F3F6=F1F2F3F7
=F2F3F4F5=F1F3F4F6=F3F4F6F7
=F1F2F5F6=F2F5F6F7=F1F5F6F7
=F1F2F3F4F5F6F7:

2. Second Fraction by Sign‑Switching: Flip every sign in all columns of the first fraction.
Its defining relation becomes

I2=¡F1F2F4=¡F1F3F5=¡F2F3F6=F1F2F3F7
=F2F3F4F5=F1F3F4F6=¡F3F4F6F7
=F1F2F5F6=¡F2F5F6F7=¡F1F5F6F7
=¡F1F2F3F4F5F6F7:

3. Combine to Resolution IV: Pooling both fractions cancels all length‑3 and length‑7
words, leaving only length‑4 words as the shortest aliases. The final defining relation is

I=F1F2F3F7=F2F3F4F5=F1F3F4F6=F1F2F5F6=F3F5F6F7=F2F4F6F7=F1F4F5F7:

Remark 8. (Selection of Resolution IV and V Designs)

� A main effect or two‑factor interaction (2‑fi) is said to be clear if none of its aliases is a
main effect or two‑factor interaction.

� A main effect or two‑factor interaction is said to be strongly clear if none of its aliases is
a main effect, two‑factor interaction, or three‑factor interaction (3‑fi).

1. In any Resolution IV design, all main effects are clear.

2. In any Resolution V design, all main effects are strongly clear and all two‑factor interactions
are clear.

3. Among Resolution IV designs with fixed k and p, those maximizing the number of clear
two‑factor interactions are preferred.

4.4 Blocking Fractional Factorials

Blocking fractional factorials is a technique used in fractional factorial experimental designs to
control nuisance variables (like time, batch, machine differences) without confounding them with
the primary treatment effects you care about.

1. Add "block" as a new factor, but instead of randomizing fully across all runs, you restrict
randomization within each block .

2. The blocks are chosen based on defining relations � you decide that certain interac-
tions (e.g., AC) are "negligible," so you use them to split the design into blocks.
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3. As a result, the block effects are confounded (aliased) with higher-order interactions,
but not with the main effects or low-order interactions you're most interested in.

4.4.1 2V
5¡1 in 2 or 4 blocks

Suppose we have a 25¡1 fractional factorial design, with defining relation:

I=ABCDE

If we want to run it in 2 blocks of 8 runs each. we might use AC as the blocking factor:

� Runs where AC=+1 go into Block 1

� Runs where AC=¡1 go into Block 2

If we want to run it in 4 blocks of size 4. We might use AC and CD as the blocking factors

� Runs with AC=+ and BD=+ ! Block 1.

� Runs with AC=+ and BD=¡ ! Block 2.

� Runs with AC=¡ and BD=+ ! Block 3.

� Runs with AC=¡ and BD=¡ ! Block 4.

Table 22. 2V
5¡1 in 2 blocks of size 8 Table 23. 2V

5¡1 in 4 blocks of size 4

4.4.2 2IV
4¡1 in 4 blocks

Consider a 2IV
4¡1 design with defining relation

I=ABCD:
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We introduce blocking factors X=¡AC and Y=¡AB to define the blocks. Then we get a �fold-
over� design as shown in table 24 with following properties:

� Any fold-over design of resolution IV can be divided into blocks of size two.

without losing its resolution IV property.

� Each block consists of a pair of complementary treatment combinations.

� The blocking procedure corresponds to taking the 2fi's as blocking factors.

A B C D X Y
- - - - - -
+ - - + + +
- + - + - +
+ + - - + -
- - + + + -
+ - + - - +
- + + - + +
+ + + + - -

Table 24. 2IV
4¡1 in 4 blocks

4.4.3 Blocking resolution III designs

In a saturated Resolution III design with 2k runs and 2k¡ 1 factors:

� Blocking one factor (e.g., A) into two blocks leaves 2k¡ 2 treatment factors, with each
block having 2k¡1 runs.

� Blocking two factors and their interaction (e.g., A, B, and AB) creates four blocks,
reducing to 2k¡ 4 treatment factors. Because AB would correspond to a third factor.

Example:

� Start with 24= 16 runs, factors A;B;C;D.

� Define blocking factors X =AD, Y =BC.

� Skip XY=ABCD (already determined by X and Y ).

� Add new factors: E=AB, F =AC, G=BD, H =CD, J =ABC, K=ABD, L=ACD, M =
BCD.

Result:

� A 2III
12¡8 design: 12 factors, 4 blocks of 4 runs each, maintaining Resolution III.

5 Random Effects Model

5.1 General Case: Mixed Effects Model

Consider the following mixed�effects formulation for a three�way ANOVA structure:

yijk  =  �  +  �i  +  bj  +  cij  +  "ijk; i=1; : : : ; I ;   j=1; : : : ; J ;   k=1; : : : ; n;
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where

� � denotes the overall intercept.

� �i are fixed primary�factor effects satisfying
P

i=1
I �i=0.

� bj are random secondary�factor effects with E[bj] = 0 and Var(bj)=�b2.

� cij are random interaction effects between levels i and j, with E[cij]=0, Var(cij)=�c2, and,
for each j,

P
i=1
I cij=0.

� "ijk are residual errors satisfying E["ijk]= 0, Var("ijk)=�2, and independent of all random
effects.

This model admits the compact matrix representation

y=X �+Z a+ "; (7)

where

� y is the (I J n)� 1 response vector.

� �=(�;   �1; : : : ; �I)T is the (I +1)� 1 vector of fixed effects.

� a=(b1; : : : ; bJ ;   c11; : : : ; cIJ)T is the random�effects vector and

Cov(bj ;   cii0)= 0 8  i; i0; j:

� X and Z are the corresponding design matrices for fixed and random effects, respectively.

� " is the residual vector of length I J n.

We assume

E[a] = 0;E["] = 0;Cov(a; ")= 0;

Cov(a)=V ;Cov(")=�2 I ;

with I the identity matrix, V typically block�diagonal and can be partitioned as

V =

0BBBBBB@
�b
2 IJ|||||||{z}}}}}}}

Var(b)

0

0 �c
2 II J||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
Var(c)

1CCCCCCA:

Continuous�sum constraints
P

i�i=0 and
P

i cij=0 ensure identifiability of fixed and interaction
effects.

5.1.1 Recap: estimable function and its properties

Now we recall the definition and some properties of estimable functions.

Definition 4. (Estimable Function) A linear function of the parameter vector    =  cT� is said
to be estimable if there exists a vector a2Rn such that the linear statistic aTy is unbiased for  ,
i.e. E[aT y]  =  cT � for all �:
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Theorem 1. (Characterization of Estimability) The function  = cT � is estimable if and
only if the row vector cT lies in the row space of the design matrix X. Equivalently, there exists a
vector a2Rn satisfying cT   =  aTX:

Lemma 1. (Uniqueness via Projection) Suppose  = cT� is estimable, and let Vr =
Col(X) denote the column space of X. Then among all unbiased linear estimators of  , there
is a unique one of the form aT y with a 2 Vr. Moreover, if bT y is any unbiased estimator of  ,
then a=ProjVr(b).

Theorem 2. (Gauss�Markov).
Every estimable function  = cT � admits a unique linear unbiased estimator  ̂whose variance is
minimal among all unbiased linear estimators. Concretely, if �̂ is any (generalized) least�squares
solution to X�̂= y, then

 ̂  =  cT �̂

is the Best Linear Unbiased Estimator (BLUE) of  .

5.1.2 Estimation of contrasts

Under the linear mixed�effects framework, consider estimation of an estimable contrast
 =�T �. We proceed as follows:

1. Condition for estimability.
The scalar function  =�T� is estimable if and only if the row vector �T lies in the row space of
the fixed�effects design matrix X.

2. Covariance structure.
Writing �=Cov(y)=ZVZT +�2I, where V =Cov(a) and �2I=Cov("), the generalized least
squares (GLS) estimator for the fixed�effects vector is

�̂GLS=(XT�¡1X)¡XT�¡1y;

and hence the Best Linear Unbiased Estimator (BLUE) of  is

 ̂GLS=�T �̂GLS=�T (XT�¡1X)¡XT�¡1y:

3. Balanced�data simplification.
In many applications�particularly when the design is orthogonal or balanced�the covariance
matrix � is unknown but need not be explicitly estimated: one can show that the ordinary
least squares estimator

 ̂OLS=�T (XTX)¡XT y

coincides with the GLS�based BLUE of  .

4. Illustrative example.
For the mixed�effects model

yijk= �+�i+ bj+ cij+ "ijk;

the fixed�effects component is E[yijk] = �+�i. The contrast �1¡�2 is estimable (since its
coefficient vector lies in the row space of X), and under balance the OLS estimator

�̂1¡ �̂2= y
ˉ
1��¡ y

ˉ
2��
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is therefore also the BLUE for the mixed model.

Best linear unbiased predictor of vector a.

Consider the mixed effect model (7), the predictor of a minimizing mean�squared error is the
conditional expectation E[ajy].

If (a; y) is jointly Gaussian, then Cov(a; y)=V ZT , and the standard formula for the multivariate
normal conditional expectation gives

E[aj y] =E[a] +Cov(a; y) [Cov(y)]¡1(y¡E[y])=V ZT �¡1 (y¡X �):

More generally, V ZT �¡1 (y ¡X �) is the best linear unbiased predictor (BLUP) of a.
Because � is typically unknown, one replaces it by its generalized least�squares (or, in balanced
designs, OLS) estimator

�̂=(XT �¡1 X)¡XT �¡1 y  =  (XTX)¡XT y:

The resulting BLUP is

â=V ZT �¡1(y¡X �̂):

5.2 One-way Random Effects Model

Now we consider a special case: one�way random�effects model which is defined by

yij  =  �  +  ai  +  "ij ; i=1; : : : ; t;   j=1; : : : ; n;

where:

1. The group effects ai are independent and identically distributed with

E[ai] = 0;Var(ai)=�a2;Cov(ai; ai0)= 0    (i=/ i0):

2. The within�group errors "ij are independent and identically distributed with

E["ij] = 0;Var("ij)=�2;

and

Cov("ij ; "i0j0)= 0whenever i=/ i0 or j=/ j0:

3. The group effects and the errors are mutually independent:

Cov(ai; "i0j0)= 0 for all i; i0; j0:

Under these assumptions, the marginal moments of yij are

Var(yij)=Var(ai)+Var("ij)=�a2+�2;8 i; j ;

Cov(yij ; yik)=Cov(ai+ "ij ; ai+ "ik)=Var(ai)=�a2; j=/ k;

Cov(yij ; yi0j0)= 0; i=/ i0;

so that observations from distinct groups are uncorrelated, while observations within the same
group share the common component ai.
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5.2.1 Estimation of random effects

Now we consider doing estimation and inference in such a model.

1. Design matrices and variance components.
Writing the model in matrix form y=X �+Z a+", one finds that the ML (or GLS) estimator of
the fixed parameters satisfies

�̂= y�� ;

i.e. the overall sample mean (since with two observations per group the normal equations
collapse to an intercept only). We assume the random�effects covariance is

V =Cov(a)=�a2 I3;

and the marginal covariance of y is

�=Z V ZT   +  �2 I6=blockdiag(�2I2+�a2J2; �2I2+�a2J2; �2I2+�a2J2);

where J2 is the 2� 2 matrix of ones.

2. Inverse covariance.
A standard matrix�inverse identity for a compound�symmetric block gives

(�2I2+�a2J2)¡1=
1
�2

�
I2  ¡   �a

2

�2+2�a2
J2

�
:

Hence

�¡1= 1
�2

blockdiag
�
I2¡ �a

2

�2+2�a
2 J2;   I2¡

�a
2

�2+2�a
2 J2;   I2¡

�a
2

�2+2�a
2 J2

�
:

3. Derivation of the BLUP.
The Best Linear Unbiased Predictor of a is

BLUP(a)=V ZT �¡1 (y¡X �̂):

Noting that ZT concatenates the row�sums within each group (i.e.\ each block has a row of
two ones in the corresponding position), one obtains after simplification

BLUP(a)= 2�a2

�2+2�a2

0@ y1:¡ y::
y2:¡ y::
y3:¡ y::

1A;
where y�i�=(yi1+ yi2)/2 is the ith group mean and y��� the overall mean.

4. Plug�in estimator
Replacing �a2 and �2 by their estimates �̂a2 and �̂2 yields the empirical BLUP

This estimator shrinks each group deviation toward zero in proportion to the signal�to�noise
ratio 2�a2/(�2+2�a2).

5.2.2 Estimation of variances

Under the one�way random�effects model, one may obtain method�of�moments estimators of the
variance components by equating the observed mean squares to their theoretical expectations:

E[MSR] =�2; E[MST ] =�2+n �a2:
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Replacing the expectations with the corresponding sample mean squares,

MSR=
SR

t(n¡ 1) ;MST =
ST
t¡ 1 ;

we obtain the moment estimators

�̂2 =MSR=
SR

t(n¡ 1) ;

�̂2+n �̂a2 =MST =
ST
t¡ 1 :

Solving for �̂a2 yields

�̂a
2= 1

n
(MST ¡MSR)=

1
n

�
ST
t¡ 1   ¡   SR

t(n¡ 1)

�
:

These estimators are unbiased for �2 and �a
2. However, in finite samples it is possible for �̂a2 to

take a negative value, in which case one typically sets it to zero or employs alternative estimation
methods (e.g. restricted maximum likelihood) to ensure nonnegativity.

Source Sum of squares DF E(MS)
Treatment ST =n

P
i=1
t (yi:¡ y::)2 t¡ 1 �2+n�a2

Residual SR=
P

i=1
t P

j=1
n (yij¡ yi:)2 t (n¡ 1) �2

Total SD=
P

i=1
t P

j=1
n (yij¡ y::)2 n t¡ 1

Table 25. ANOVA Table for Random Effects Model

5.2.3 Hypothesis test

Suppose we want to test are there significant random effects in our data, it is equivalent to test

H0:�a2=0:

We can derive hypothesis test procedure based on the following theorem.

Theorem 3. Let y�Nnt(�Int; �), where

�=�2 Int  +  �a2 A;

and A is the block�diagonal matrix with t identical blocks of size n�n, each equal to the matrix of
ones Jn:

A= blockdiag(Jn; Jn; : : : ; Jn):

Define the between� and within�sum of squares by

ST =n
X
i=1

t

(yi�¡ y��)2; SR=
X
i=1

t X
j=1

n

(yij¡ yi�)2:

Then:

1.
ST

�2+n �a2
� � t¡1

2 .

2.
SR
�2

� � t(n¡1)
2 .

3. ST and SR are independent.
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Under the full model, the ratio

ST/[(t¡ 1) (�2+n �a2)]
SR/[t(n¡ 1) �2]

  �  F t¡1;  t(n¡1):

In particular, under H0 (when �a2=0), this simplifies to the test statistic

F = ST /(t¡ 1)
SR/ft(n¡ 1)g

  �  F t¡1;  t(n¡1):

Hence, at significance level �, one rejects H0 if

F   >  F t¡1;  t(n¡1);  �;

where F �1;�2; � denotes the upper ��quantile of the F -distribution with �1 and �2 degrees of
freedom.

Remark 9. This testing procedure coincides with the classical one�way ANOVA F -test for fixed
effects. When H0 is false (i.e. �a2>0), the numerator mean square acquires a noncentral chi�square
component, yielding a (scaled) noncentral Fdistribution.

6 Split-Plot Design

A split-plot design is a two-stage (or multi-stage) experimental design used when some factors
are harder or more expensive to change than others. It was originally developed in agricultural
experiments (e.g. for machine-controlled irrigation vs. hand-applied fertilizer), but now appears
in many industrial and scientific settings.

6.1 Motivating Example: Corrosion Resistance

A split�plot experiment was conducted to assess the corrosion resistance (measured by yield) of
steel bars under two factors whose levels differ markedly in how readily they can be randomized:

1. Whole�plot factor: Furnace temperature P at three levels,

P 2f360�C;   370�C;   380�Cg:

Because heating the furnace to a new temperature requires a full day's operation, these
treatments were applied to whole plots (i.e.\ each �day� of the experiment).

2. Sub�plot factor: Surface coating Q at four levels,

Q2fC1; C2; C3; C4g:

Within each day's run, the four furnace positions (slots 1�4) received a random permutation
of the four coatings; after the furnace reached its designated whole�plot temperature, bars
in each slot were coated and then tested.

The experiment was replicated b = 2 times over six consecutive days (labelled D1�D6). Each
replicate thus occupies three days (one per temperature level), and within each day the four
coatings are randomized across the four positions. Table 26 summarizes the raw corrosion�resistance
readings yijk, where i=1; 2 indexes the replicate, j =1; 2; 3 the temperature level, and k=1; : : : ;
4 the coating.
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Day Temp. (�C) Slot 1 Slot 2 Slot 3 Slot 4
D1 360 73 (C₂) 83 (C₃) 67 (C₁) 89 (C₄)
D2 370 65 (C₁) 87 (C₃) 86 (C₄) 91 (C₂)
D3 380 147 (C₃) 155 (C₁) 127 (C₂) 212 (C₄)
D4 380 153 (C₄) 90 (C₃) 100 (C₂) 108 (C₁)
D5 370 150 (C₄) 140 (C₁) 121 (C₃) 142 (C₂)
D6 360 33 (C₁) 54 (C₄) 8 (C₂) 46 (C₃)

Table 26. Corrosion Resistance Data

Aggregating these observations yields the following cell means (two replicates per temperature ×
coating combination) and marginal means:

C1 C2 C3 C4 Mean
360 67 73 83 89 78.00
370 65 91 87 86 82.25
380 155 127 147 212 160.25
360 33 8 46 54 35.25
370 140 142 121 150 138.25
380 108 100 90 153 112.75
Mean 94.67 90.17 95.67 124 101.125

Table 27.

6.2 Split-Plot Model

6.2.1 Model Formulation

Let

yijk  =  yield for replicate i=1; 2; temperature j=1; 2; 3; coating k=1; : : : ; 4:

We decompose yijk into whole�plot and subplot components as follows:

1. Whole�plot (day) model:

mij= �+ pj+ �ijw ;

where

� � is the grand mean,

� pj is the fixed main effect of temperature level j, with
P

j pj=0,

� �ij
w is the whole�plot error for replicate i, day j, satisfying E[�ijw]=0 and Var(�ijw)=�w2 .

2. Sub�plot (coating) model within each day:

yijk=mij+ qk+(pq)jk+ �ijks ;

where

� qk is the fixed main effect of coating k,
P

k qk=0,

� (pq)jk is the fixed interaction between temperature j and coating k, subject
to
P

j (pq)jk=0 and
P

k (pq)jk=0,
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� �ijk
s is the subplot error with E[�ijks ] = 0 and Var(�ijks )=�s2, independent of �i0j0w .

Equivalently, the split�plot model can be written as

yijk= �  +  pj  +  �ijw||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
whole�plot (day) model

  +   qk  +  (pq)jk  +  �ijks||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
subplot (coating) model

;

Because temperature assignments cannot be rerandomized more than once per day, the variability
due to �w must be estimated from the variation among whole plots (days). Coating effects and their
interactions are estimated from within�day comparisons and thus are tested against the finer�scale
error �s2. This split�plot structure both reflects the physical constraints of the furnace and pro-
vides efficient estimation of the subplot (coating) effects while properly accounting for the larger
whole�plot variability.

6.2.2 ANOVA for split-plot design

Data Decomposition
Any observation may be decomposed into orthogonal components corresponding to overall mean,
main effects, interaction, and residuals:

yijk =y���+(y�j�¡ y���)+ (yij�¡ y�j�)+ (y��k¡ y���)+ (y�jk¡ y�j�¡ y��k+ y���)+ (yijk¡ yij�¡ y�jk+ y�j�):

ANOVA Table
Let

SSP =b q
X
j=1

p

(y�j�¡ y���)2; dfP =p¡ 1;

SSWP =q
X
i=1

b X
j=1

p

(yij�¡ y�j�)2; dfWP =b p¡ p;

SSQ =b p
X
k=1

q

(y��k¡ y���)2; dfQ =q¡ 1;

SSPQ =b
X
j=1

p X
k=1

q

(y�jk¡ y�j�¡ y��k+ y���)2; dfPQ =(p¡ 1)(q¡ 1);

SSSP =
X
i;j;k

(yijk¡ yij�¡ y�jk+ y�j�)2; dfSP =b p (q¡ 1);

SSTotal =
X
i;j;k

(yijk¡ y���)2; dfTotal =b p q¡ 1:

Then we have an ANOVA table

Source SS df EMS

P SSP p¡ 1 bq¡1�s
2+ q �w

2 + bq
∑j pj

2

p¡ 1
Whole�plot error SSWP p(b¡ 1) q �w

2 +�s2

Q SSQ q¡ 1 �s
2+ bp ∑k qk

2

q¡ 1

P �Q SSPQ (p¡ 1)(q¡ 1) �s
2+ b

P
jk (pq)jk

2

(p¡ 1)(q¡ 1)
Subplot error SSSP bp(q¡ 1) �s

2

Total SSTotal bpq¡ 1 �

Table 28. ANOVA Table of Split-plot Design
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6.3 Split-plot with Blocks

Let

yijk= response in block i;   whole�plot treatment j ;   subplot treatment k;

for i=1; : : : ; b, j=1; : : : ; p, k=1; : : : ; q. Under the usual sum�to�zero constraints on all fixed effects,
the mixed model is

yijk= �+ bi+ pj+ �ij
(w)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

grand mean �;
block effect bi;

whole�plot (block�P) interaction error �ij
(w)�(0;�w2 )

  +   qk+(pq)jk+ �ijk
(s)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

subplot factor qk;
P�Q interaction (pq)jk;
subplot error �ijk

(s)�(0;�s2)

:

Each observation decomposes into orthogonal contrasts:

yijk =y���+(yi��¡ y���)+ (y�j�¡ y���)+ (yij�¡ yi��¡ y�j�+ y���)
+(y��k¡ y���)+ (y�jk¡ y�j�¡ y��k+ y���)+ (yijk¡ yij�¡ y�jk+ y�j�);

Define the whole�plot error sum of squares

SSWP=
X
i=1

b X
j=1

p

(yij�¡ yi��¡ y�j�+ y���)2:

One shows by independence and zero�sum constraints that

E[SSWP] = (b¡ 1)(p¡ 1) (q¡1�s2+�w2 ):

Thus the whole�plot error mean square satisfies

E[MSWP] =
q

(b¡ 1)(p¡ 1) E[SSWP]  =  q �w2   +  �s2;

exactly as in the block free split�plot design.

6.4 Split-Plot with Two Subplot Factors

Now suppose that within each whole�plot (block � P ) we implement a full factorial in two subplot
factors Q (with q levels) and R (with r levels). The observation index becomes yijkl for block i,
whole�plot j, subplot levels kand l.

6.4.1 Model Specification

yijkl =�+ pj+ �ij
(w)+ qk+ rl+(qr)kl+(pq)jk+(pr)jl+(pqr)jkl+ �ijkl

(s)
;

with all effects subject to their appropriate sum�to�zero constraints. In particular, the three�factor
interaction is defined by

(pqr)jkl= �jkl¡ (�+ pj+ qk+ rl+(pq)jk+(pr)jl+(qr)kl);

and its unbiased estimate is

(pqr)jkl= y�jkl¡f y����+(y�j��¡ y����)+ (y��k�¡ y����)+ (y���l¡ y����)g

¡f(y�jk�¡ y�j��¡ y��k�+ y����)+ (y�j�l¡ y�j��¡ y���l+ y����)+ (y��kl¡ y��k�¡ y���l+ y����)g:
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6.4.2 Full Orthogonal Decomposition

Analogous to the two�factor split�plot, one can write each yijkl as the sum of ten orthogonal
components:

yijkl =y����+(y�j��¡ y����)+ (yij��¡ y�j��)+ (y��k�¡ y����)+ (y���l¡ y����)
+(y�jk�¡ y�j��¡ y��k�+ y����)+ (y�j�l¡ y�j��¡ y���l+ y����)
+(y��kl¡ y��k�¡ y���l+ y����)+ (y�jkl¡ : : :+y����)
+(yijkl¡ yij��¡ y�jkl+ y�j��);

thus isolating the grand mean, three whole�plot terms, three two�factor interactions, the three�factor
interaction, and the subplot error. This orthogonal decomposition underpins the construction of
the corresponding ANOVA table and the derivation of each expected mean square for valid F-tests.

Source SS DF
P b q r

P
j (y��j��¡ y�����)

2 p¡ 1
Whole plot error q r

P
i;j (y�ij��¡ y��j��)

2 (b¡ 1) p
Whole plot total q r

P
i;j (y�ij��¡ y�����)

2 b p¡ 1
Q bp r

P
k (y���k�¡ y�����)

2 q¡ 1
R b p q

P
l (y����l¡ y�����)

2 r¡ 1
QR � (q¡ 1) (r¡ 1)
PQ b r

P
j;k (y��jk�¡ y��j��¡ y���k�+ y�����)2 (p¡ 1) (q¡ 1)

PR b q
P

j;l (y��j�l¡ y��j��¡ y����l+ y�����)2 (p¡ 1) (r¡ 1)
PQR b

P
j;k;l (y��jkl¡ y��jk�¡ y��j�l¡ y���kl+ y��j��+ y���k�+ y����l¡ y�����)2 (p¡ 1) (q¡ 1) (r¡ 1)

Subplot error
P

i;j;k (yijkl¡ y�ij��¡ y��jkl+ y��j��)2 (b¡ 1) p (q r¡ 1)
Total

P
i;j;k (yijkl¡ y�����)

2 b p q r¡ 1

Table 29. ANOVA table for the split-plot experiment

6.5 Final Remarks on Split-Plot Design

Advantages

� Enhanced subplot precision: Subplot�factor comparisons use the smaller subplot�error
MS, yielding more precise inferences than a fully randomized design.

� Practical logistics: Accommodates hard�to�change whole�plot treatments without complete
rerandomization.

Disadvantages

1. Fewer error df: Two variance components (�w2 ; �s2) consume more degrees of freedom than
a single residual term.

2. Uneven precision trade�off: Because whole�plot df � subplot df, the loss in whole�plot
precision often outweighs the gain in subplot precision.

3. Reduced power for some interactions: Tests involving whole�plot factors have less error
df than in a completely randomized design.

4. Multiple SEs required: Up to four distinct MS estimates complicate graphical or tabular
comparisons.

5. Complex inference: Exact distributions for whole�plot MS are not closed�form, making
some tests and CIs more involved.
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Take-Away
Split�plot designs suit experiments constrained by hard-to-change factors but sacrifice uniform pre-
cision. When all treatment contrasts require similar accuracy, alternative factorial layouts typically
outperform.

7 Incomplete Block Designs

We wish to compare six treatments A;B; C;D;E; F using two blocks (indexed by i=1; 2), each
of size 5. The allocation is

Block 1: A; C; D; E; F ;
Block 2: B; C; D; E; F :

Let �2 denote the common within�block error variance. We denote by Yij the observed yield for
treatment j 2fA; : : : ; F g in block i, except that the pair (i; j)= (1; B) and (2; A) are unobserved
by design.

7.1 Direct Comparisons

Comparisons among the treatments in both blocks. For any two treatments j ; k2fC;D;
E; F g, each appears once in each block. Hence an unbiased estimator of the treatment difference
tj¡ tk is

(Y1j¡Y1k)+ (Y2j¡Y2k)
2

;

which has variance

Var
� 1
2
((Y1j¡Y1k)+ (Y2j¡Y2k))

�
=�2:

Comparison of A versus B. Because A appears only in Block 1 and B only in Block 2, we
must adjust for the block effect. Define the block�effect estimator

b̂= 1
4

X
j2fC;D;E;F g

Y1j|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Y1�

¡ 1
4

X
j2fC;D;E;F g

Y2j ;

which satisfies Var(b̂)= �2

2
. Then an unbiased estimator of tA¡ tB is

(Y1A¡Y2B) ¡ b̂ ;

with variance

Var(Y1A¡Y2B¡ b̂)= 2 �2+ �2

2
= 5 �2

2
:

Comparison of A versus C. Here C is observed in both blocks but A only in Block 1. One
may form the estimator

Y1A ¡
Y1C+Y2C+ b̂

2
;

which is unbiased for tA¡ tC and has variance

Var
�
Y1A¡ 1

2
(Y1C+Y2C+ b̂)

�
=�2+ �2

2
= 3 �2

2
:

(See, however, the least�squares solution below for the exact efficiency factor.)
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7.2 Least�Squares Analysis

We fit the standard one�way two�block model with treatment effects and block effects:

Yij= �+ bi+ tj+ �ij ; i=1; 2; j 2fA; : : : ; F g;

where �ij �
i.i.d.

N(0; �2), subject to the constraints

b1+ b2=0;
X
j

tj=0:

Omitting the two empty cells (1;B) and (2;A), the normal�equations yield the following estimates.

Estimate of tA¡ tB.

t̂A¡ t̂B=
5
4
[(Y1A¡Y2B)¡ (Y1�¡Y2�)]

=1
4

 
4Y1A ¡ 4Y2B ¡

X
j2fC;D;E;F g

Y1j +
X

j2fC;D;E;F g
Y2j

!
;

with

Var( t̂A¡ t̂B)=
5 �2

2
:

Estimate of tA¡ tC.

t̂A¡ t̂C=
1
8
[9Y1A¡Y2B¡ 8Y�C ¡ 5 (Y1�¡Y2�)]

=1
8

 
8Y1A¡ 5Y1C ¡ 3Y2C ¡

X
j2fD;E;F g

(Y1j¡Y2j)
!
;

where Y�C=Y1C+Y2C and Yi�=
P

jYij. Its variance is

Var( t̂A¡ t̂C)=
�2

82
(82+12+52+32+6)= 13 �2

8
:

Here the �6� arises from the two missing observations (one each in Blocks 1 and 2).

These formulas quantify the relative efficiencies of direct versus least�squares estimators in an
incomplete�block setting. The least�squares approach automatically accounts for the unequal repli-
cation of A and B across blocks and yields the correct variance factors.

7.3 Balanced Incomplete Block Design

Let v be the number of treatments, b be the number of blocks, r be the replicate of each treatment,
k<v be the unites per block. A balanced incomplete�block design (BIBD) with parameters (v;
b; r; k; �), where � means each pair of treatments occurs together in � blocks, is a way of arranging
v treatments into b blocks so that

1. Each block contains exactly k distinct treatments (so �incomplete� means k <v).

2. Each treatment appears in exactly r blocks.

3. Every unordered pair of distinct treatments occurs together in exactly � blocks (the �bal-
anced� condition).
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These parameters are not independent but must satisfy two counting identities:

1. Total�unit count
Counting �treatment�in�block� incidences in two ways gives

v r  =  b k:

On the left is �each of v treatments appears in r blocks,� for a total of v r incidences; on
the right is �each of bblocks contains k treatments,� for a total of b k.

2. Pair�co�occurrence count
Fix any one treatment T . It appears in r blocks; in each of those blocks it co�occurs with (k¡
1) other treatments, giving r (k ¡ 1) ordered �T�other� incidences. On the other hand,
each of the other (v ¡ 1)treatments co�occurs with T in exactly � blocks, for a total of �
(v¡ 1) �T�other� incidences. Equating,

r (k¡ 1)  =  � (v¡ 1):

Solving for � yields the standard formula

�  =  r (k¡ 1)
v¡ 1 :

Properties of a Balanced Incomplete Block Design

� Estimability of treatment contrasts.
Every linear contrast among the treatment effects can be uniquely estimated under the standard
BIBD model.

� Uniform precision of pairwise comparisons.

The variance of the estimator for any difference between two treatments is the same for all
�
t
2

�
pairs.

� Minimized average confidence�interval length.
Over all pairwise contrasts, a BIBD tends to yield the shortest average length of (1¡�)%-confi-
dence intervals.

Limitation

� Existence constraints.
Feasible BIBDs occur only for specific integer solutions (t;b;r;k;�); for many parameter combi-
nations no design exists.

Example 11. (BIBD(6;6;5;5;4)) 6 treatments with 30 units grouped in 6 blocks of 5 units.Below
is the simplest balanced incomplete�block design (a BIBD) that meets your requirements:

� Treatments: v=6 (call them A;B;C;D;E; F )

� Blocks: b=6, each of size k=5

� Replications: each treatment appears r=5 times

� Each pair of treatments occurs together in

�  =  r (k¡ 1)
v¡ 1   =  5 � (5¡ 1)

6¡ 1   =  4
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blocks.

Because vr = bk (6 � 5 = 6 � 5), such a BIBD exists and is in fact the complement of the trivial
one�treatment�per�block design: simply omit each treatment exactly once. Concretely, number your
blocks i=1; :: :;6, and let Block i contain all treatments except treatment i. In alphabetical labels:

Block Treatments included Omitted
1 B, C, D, E, F A
2 A, C, D, E, F B
3 A, B, D, E, F C
4 A, B, C, E, F D
5 A, B, C, D, F E
6 A, B, C, D, E F

Table 30. BIBD(6; 6; 5; 5; 4)

Example 12. (Incomplete�block design with v=6, b=6, k=4, r=4)

Six treatments fA; : : : ; F g, six blocks of size 4, each treatment in r= 4 blocks (omitted twice),
never repeated within a block. A BIBD would require

�  =  r (k¡ 1)
v¡ 1   =  4 � 3

5
  =  12

5
;

which is not an integer. Since � must be a whole number, no BIBD can exist for these
parameters.

General variance formula. For any contrast c0�̂,

Var(c0�̂)=�2 c0(X0X)¡1c:

Design I (Missing pairs: (AB); (AC); (BC); (DE); (DF ); (EF )).

� Notice this �splits� the six treatments into two triangles fA;B;Cg and fD;E; F g.

� As a result, for the three �within�triangle� pairs

AB;   AC;   BC and DE;   DF;   EF

each pair never appears together in exactly two blocks (those two in which the pair is
omitted), and always appears in the other four. This gives them higher precision.

� The remaining nine pairs (one from each triangle across triangles, e.g. A vs. D, B vs.E,
etc.) each co�occur in only three blocks, so are estimated with slightly larger SD.

Contrast SD (Design I)
AB;AC;BC;DE;DF;EF 0.7303 �
the other 9 pairs 0.7601 �

Table 31. Variance of design I

Design II (Missing pairs: (AB); (AC); (BD); (CE); (DF ); (EF )).

� This pattern �mixes� treatments more evenly across blocks.
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� Consequently, six of the contrasts attain the best precision, another six are slightly worse,
and the remaining three are just a hair larger.

Contrast SD (Design II)
AB;AC;BD;CE;DF;EF 0.7321 �
AD;BF;DE;FC;EA;CB 0.7579 �
AF;BE;DC 0.7596 �

Table 32. Variance of design II

Comparison. Design I gives maximum efficiency for its six primary contrasts; Design II spreads
precision more evenly. Choose according to which pairs are of greatest interest.

Remark 10. Note if the observations were obtained from 4 complete blocks of size 6, the standard
deviation would be �/ 2

p
� 0.707�

Switching from 4 RCBs of size 6 to 6 blocks of size 4 incurs only a small efficiency penalty (6�15%)
in SD of treatment differences, while offering potential gains in reducing � via more homogeneous
blocking and greater logistical flexibility. The choice of how to omit treatments�Design I versus
Design II�lets you �tune� which pairs receive the best precision.

Example 13. (Unbalanced Design) Construct an incomplete�block arrangement for six treatments
A;B;C;D;E;F on N = 25 experimental units, grouped into b=5 blocks of size k=5. Each block
omits exactly one treatment, so one treatment must appear in all blocks. Label the blocks 1; : : : ;
5, and choose A to be the �always�included� treatment. A convenient allocation is:

Block I I I I I I I V V

Treatments

A
B
C
D
E

A
B
C
D
F

A
B
D
E
F

A
B
D
E
F

A
C
D
E
F

Table 33. Unblanced Design

� v=6 treatments, b=5 blocks, each of size k=5.

� Treatment A occurs in all 5 blocks; each of B;C;D;E; F occurs in exactly 4 blocks.

� Each block omits a different treatment, so that no block repeats.

� This design is not balanced since the replication numbers differ, but it may be useful when
one treatment must serve as a control (appearing in every block) and each other treatment
must be compared to it under as homogeneous block conditions as possible.

Example 14. (Unequal-Block Design)We have

� Treatments: A;B;C;D;E; F ;G (v=7).

� Total units: 35.

� Blocks: 5 blocks of sizes 5; 6; 7; 7; 10.

� Replication: each treatment must appear r= 35/7=5 times.
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Because block V holds 10> 7 units, some treatments must be repeated there. One convenient
allocation is:

Block Size Multiset of treatments
I 5 fA;B;C;D;Eg
II 6 fA;B;C;D; F ;Gg
III 7 fA;B;C;D;E; F ;Gg
IV 7 fA;B;C;D;E; F ;Gg
V 10 fA;B;C;D;E;E; F ; F ;G;Gg

Table 34. Unequal Block Design

� Within�block replication (in block V) is a legitimate way to attain the required overall
replication when ki>v.

� Analysis is still a simple two�way ANOVA with blocks and treatments; just build the design
matrix X according to the above multiplicities.

This design thus achieves a perfectly balanced replication r=5 for each treatment while respecting
the pre�specified block�size pattern (5; 6; 7; 7; 10).

7.4 Cyclic Balanced Incomplete Block Designs

� Definition.
A cyclic design is a BIBD in which every block can be obtained by applying a fixed cyclic permu-
tation (rotation) to the treatments in an initial �starter� block.

� Construction procedure.

1. Select an initial block of size k from the t treatments.

2. Generate subsequent blocks by cyclically rotating the labels of the treatments
in the starter block through all t positions.

3. Validate balance. The starter block must be chosen so that each unordered pair
of treatments appears exactly � times across the b rotated blocks.

� Illustrative example (t= b=7;   k= r=3;   �=1).

1. Inferior choice: If the starter block is (A B C), cyclic rotation yields

(ABC); (BCD); (CDE); (DEF); (EFG); (FGA); (GAB):

In this arrangement some treatment�pairs occur multiple times while others occur
only once, violating the balance requirement.

2. Valid BIBD starter: If instead one uses (A B D), cyclic rotation produces

(ABD); (BCE); (CDF); (DEG); (EFA); (FGB); (GAC);

which satisfies

t=7; b=7; k=3; r=3; �=1;

and hence constitutes a proper cyclic BIBD.
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7.5 Latin Squres

A Latin�square design provides a way to control two orthogonal nuisance factors simultane-
ously�commonly called �row� and �column� blocks�while comparing t treatments. Its key features
are:

1. Layout and blocking structure

� There are t2 experimental units arranged in a t� t grid.

� Row blocks: t horizontal strips, each containing one of each treatment.

� Column blocks: t vertical strips, each also containing one of each treatment.

� Thus each treatment appears exactly once in every row and once in every column.

2. Connection with randomized�block designs

� Viewed marginally, the rows themselves form a randomized-complete-block design
(RCBD) for the ttreatments (one replicate per row).

� Likewise, the columns form an independent RCBD.

3. Canonical example ( t=4 )

A B C D
B D A C
C A D B
D C B A

In this 4� 4 Latin square, each of the treatments A;B;C;D appears exactly once in each
row and each column.

4. Statistical model
For the response yij observed in row i and column j, let k(i; j) denote the treatment assigned there.
The usual additive model is

yij= �+ ri+ cj+ � k(i;j)+ "ij;

subject to the usual side�conditionsP
i=1
t ri=0;   

P
j=1
t cj=0;   

P
h=1
t �h=0; and "ij�

iid
N(0; �2).

5. Analysis and degrees of freedom

� Total: t2¡ 1

� Row effects: t¡ 1

� Column effects: t¡ 1

� Treatment effects: t¡ 1

� Error: (t¡ 1)(t¡ 2)
One then performs an ANOVA splitting sums of squares accordingly, testing treatment
differences against the mean�square error.

6. Advantages and limitations

� Advantages:

� Controls two blocking factors simultaneously, thus reducing experimental error
when both sources are important.
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� Requires only one replicate per treatment (efficient in unit usage).

� Limitations:

� Requires exactly t2 units and equal block sizes.

� Assumes no interaction among treatments and the two blocking factors.

� Suitable only when both row and column blocks are genuinely irrelevant to
treatment ordering (no ordinal or carry-over effects).
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A Plackett�Burman Table

Variable 12 16 20 24 32
1 + + + + -
2 + - + + -
3 - - - + -
4 + - - + -
5 + + + + +
6 + - + - -
7 - - + + +
8 - + + - -
9 - + - + +
10 + - + + +
11 - + - - +
12 � - + - -
13 � + - + +
14 � + - + +
15 � + - - -
16 � � - - -
17 � � + + -
18 � � + - +
19 � � - + +
20 � � � - +
21 � � � - +
22 � � � - +
23 � � � - -
24 � � � � -
25 � � � � +
26 � � � � +
27 � � � � -
28 � � � � +
29 � � � � -
30 � � � � -
31 � � � � +

Table 35. Plackett�Burman Table
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